The Ca2+-activated chloride channel anoctamin-2 mediates spike-frequency adaptation and regulates sensory transmission in thalamocortical neurons
نویسندگان
چکیده
Neuronal firing patterns, which are crucial for determining the nature of encoded information, have been widely studied; however, the molecular identity and cellular mechanisms of spike-frequency adaptation are still not fully understood. Here we show that spike-frequency adaptation in thalamocortical (TC) neurons is mediated by the Ca2+-activated Cl- channel (CACC) anoctamin-2 (ANO2). Knockdown of ANO2 in TC neurons results in significantly reduced spike-frequency adaptation along with increased tonic spiking. Moreover, thalamus-specific knockdown of ANO2 increases visceral pain responses. These results indicate that ANO2 contributes to reductions in spike generation in highly activated TC neurons and thereby restricts persistent information transmission.
منابع مشابه
Calcium-activated chloride channels: a new target to control the spiking pattern of neurons
The nature of encoded information in neural circuits is determined by neuronal firing patterns and frequencies. This paper discusses the molecular identity and cellular mechanisms of spike-frequency adaptation in the central nervous system (CNS). Spike-frequency adaptation in thalamocortical (TC) and CA1 hippocampal neurons is mediated by the Ca2+-activated Cl- channel (CACC) anoctamin-2 (ANO2)...
متن کاملSpike Frequency Adaptation in Neurons of the Central Nervous System
Neuronal firing patterns and frequencies determine the nature of encoded information of the neurons. Here we discuss the molecular identity and cellular mechanisms of spike-frequency adaptation in central nervous system (CNS) neurons. Calcium-activated potassium (KCa) channels such as BKCa and SKCa channels have long been known to be important mediators of spike adaptation via generation of a l...
متن کاملForskolin attenuates the paraoxon-induced hyperexcitability in snail neurons
Introduction: Since organophosphorus compounds (OP) are toxic and designed to destroy insects and pest species, there are many hazards associated with their use. Although, the main target site of these compounds is acetylcholinesterase (AChE), however it has become increasingly evident that OPs have also other direct effects on cellular processes. In the present study, the effects of low con...
متن کاملAnoctamin Calcium-Activated Chloride Channels May Modulate Inhibitory Transmission in the Cerebellar Cortex
Calcium-activated chloride channels of the anoctamin (alias TMEM16) protein family fulfill critical functions in epithelial fluid transport, smooth muscle contraction and sensory signal processing. Little is known, however, about their contribution to information processing in the central nervous system. Here we examined the recent finding that a calcium-dependent chloride conductance impacts o...
متن کاملPresence of the Ca2+-activated chloride channel anoctamin 1 in the urethra and its role in excitatory neurotransmission.
We investigated the cellular distribution of the calcium-activated chloride channel (CaCC), anoctamin 1, in the urethra of mice, rats, and sheep by both immunofluorescence and PCR. We studied its role in urethral contractility by examining the effects of chloride-free medium and of several CaCC inhibitors on noradrenergic and cholinergic excitatory responses, and on nitrergic relaxations in ure...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2016